Tic-Tac-Toe Choice Board		
Write a fairy tale or fable with constraints that model a given system of inequalities.	Make a poster using hands-on materials or Glogster that outlines the possible answers to a system by graphing.	Set up a word problem that involves a community to model a given system of equations.
Design a lesson plan with handouts to teach "special systems" using digital tools.	STUDENT CHOICE Teacher approval required.	Describe a local, national, or global business situation that would require the solving of a system of equations.
Create a poem, rap song, or interpretive dance to explain the steps of solving by linear combination.	Explain how a solution relates to the graph and solving by linear combination. Use of online tools is optional.	Write three systems that have one, zero, and infinite solutions. Solve and explain to another group.

SOURCE: Adapted from a math lesson by Michelle Doris, HS algebra teacher.

Retrieved from the companion website for Inclusion Strategies That Work! Research-Based Methods for the Classroom, Third Edition by Toby J. Karten. Thousand Oaks, CA: Corwin. Reproduction authorized only for the local school site or nonprofit organization that has purchased this book.